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Abstract 

A four-dimensional mass action kinetic model of the synaptic slow waves has 
previously been investigated by numerical methods. Here, a slightly simplified 
version of the model is shown to produce Andronov-Hopf bifurcation at certain 
values of the reaction rate constants. It turns out that the model leads to a unique 
stable limit cycle within each simplex corresponding to a fixed value of total mass. 

1. I n t r o d u c t i o n  

Neurochemical and neurophysiological oscillatory phenomena appear at three 
different hierarchical levels of  synaptic transmission. The rapid oscillation and the 
slow wave of  free cytoplasmic acetylcholine (ACh) were reported by Dunant et al. 
[3]. The third oscillatory phenomenon is the series of  miniature end-plate potentials 

(Fatt  and Katz [9] ). 
These three oscillatory phenomena have been summarized in the "Three 

Coupled Oscillators" model by t~rdi and Tdth [7] and put into a broader framework 
by l~rdi [4].  t~rdi and Tdth [7] have also provided alternative models for these oscil- 

latory phenoma. 

*This work started when J.T. was visiting the KWIM, Berlin, within the framework of an agree- 
ment between the Academies of Sciences of the GDR and Hungary. 
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In the present paper, our interest is focused on the slow wave. This type of 
oscillation is the result of  integrated activity of the synaptic metabolic subprocesses. 
Our model, based upon the transmitter recycling hypothesis and constructed upon the 
principles proposed by Csdsz~r et al. [2], is a mass action type kinetic model with the 
elementary reactions as follows: 

i2 
X b B i s 

i 1 ~ $ i 3 2X + Y -~3X. (1) 
Yq C 

i4 

trations x, y, 

= 

= 

In this model, the chemical components or species are: 

X: cytoplasmic ACh, 
Y: choline, 
B: ACh at the postsynaptic membrane surface, 
C: choline. 

The elementary reactions are: 

1 : re-uptake of choline, 
2: diffusion of ACh, cleft processes, 
3: hydrolysis of  ACh, 
4: diffusion of choline, 
5: autocatalytic synthesis of  ACh. 

The system of differential equations describing the change of the concen- 
b, c of  the components in time is: 

- i 2 x  + il y + isx2Y 

- i  1 y + i4c - i s x 2 Y  

i2x - i 3 b  

i3b - i4c  

(2) 

according to the usual mass action type deterministic model of reaction kinetics. 
Partially published numerical results (see, for example, [8,6,12] )show that at certain 
values of the parameters called reaction rate constants, the system represented by the 
set of  equations (2) has periodic solutions. The form and location of the periodic 
solution also depends on M := x + y + b + c, a linear first integral (meaning the sum 
of the concentrations) of  the system. 
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In the present paper, a slight simplification of the model will be made in order 
to make it more amenable for qualitative investigations. This simplification means 
that the components Y and C will be united and the fourth elementary reaction will 
be disregarded. Thus, the object of our theoretical investigations will be the reaction 

k 2 
X ~,B 

k4 
kl *'x',, ¢/'k3 2 X +  Y , 3 X  

Y 
(3) 

with the kinetic differential equation 

dx 
dr 

- k2 x + k x y  + k4x2y  

dy _ kl  y + k3 b - k 4 x 2 y  (4) 
dr 

db 
dr k2x - k3b " 

(This system has also been investigated numerically and analogous results to those 
mentioned above were obtained.) 

The system represented by (4) can obviously be reduced to a two-dimensional 
one. Furthermore, it is more convenient to have a simpler, dimensionless form. In 
order to achieve this, let us introduce the following transformation: 

t ' = k 2 r  x 1:= x / k 4 / k , x  x2:= x / k l k 4 / k 2 y ,  (5) 

and let us denote the constant x + y + b by M. We thus obtain 

dx 1 
dt - x ~  + x  2 + x~x 2 

dx2 klk3 kl k3 kl 2 - -  ~ 1  k4 M. 
- - - -  x 2 - - ~ 2  x lx2 + k~ dt k~ xl + k 2 

(6) 

It is this system of differential equations that we now treat by the methods of 
the qualitative theory of differential equations in order to establish the biologically 
interesting features that have been suggested by numerical calculations. A specific 
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feature of  our investigations is that not only the occurrence of bifurcation and stability 
of the emerging limit cycle will be stated, but also the bifuraction direction. 

2.  Qua l i t a t ive  analys is  

As a result of  preliminary considerations, we consider the differential system 
obtained from (6) by introducing the notation Ki= ki/k2, i = 1 ,3 ,4 ,  for the "rela- 
tive rate constants"" 

dx  I 
- 2X2 " f l ( X 1  X 2) dt Xl + X2 + x l  = ' 

dx  2 

dt 

(7) 

= K3x/K1K4M-K1K3Xl - ( K  x + K 3 ) x 2 - K  lx:2x2 =.f2(xl,x2), 

where Kx, K3, K4, M are positive constants. We shall seek conditions guaranteeing 
the existence of  a periodic solution in the positive quadrant. To this end, we apply 
a theorem on the bifurcation of a periodic solution from an equilibrium point 
(Andronov-Hopf  bifurcation, see theorem A 1 in the appendix). 

Let us introduce the parameters 

K 3 
m := ~ 4 M ,  k := K I ( I + K 3 ) ,  (8) 

where m will be considered as the bifurcation parameter. An equilibrium point 
: = (xl, x2 ) of  (7) is a solution of  the system 

~ 2 ~  2 = 0 --"~1 + X'2 + Xl 

K 3 vr-K~im-K1K3x 1 - ( K  1 + K3)Y 2 - K a : ~ Y  2 = 0 .  

(9) 

From the first equation, we find that 

x 2  - 
l + x  1 

such that (9) is equivalent to 

(lO) 

-3 _ k x / ~ l r  n -2  + ( k +  1)~: -kx/--~lm = 0. (11) P(Xl' KI' K3' rn) := x 1 x 1 
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From (10) and (11), we immediately obtain: 

LEMMA 1 

For any positive constants K1, K3, m, the system (7) has at least one equili- 
brium point in the positive quadrant. 

Let (xl ,  x2) be an equilibrium point of  (7). Using the transformation 
xi = :~i + Yi, i = 1,2, we find from (7) that: 

dY 1 

dt  - (2"~1"~2-1)Yl + (1+~'12)y2 + ~X2y12+2"~1yly2+)'12y2 

dY 2 
dt  = - K I ( K 3  + 2"~1"~2)Yl - (g l  + K3 + Kl~'12)y2 - K I X 2 y  1 ~  2 (12) 

2 
- 2 K l x l y x y  2 - K I Y l Y  2. 

By definition, the characteristic roots of  the equilibrium point :~ := (Yl, x2) of the 
system (7) are the eigenvalues K 1,2 of the matrix f x (Y )  

~2 2xl x2 - 1 1 + x 1 
fx( ) = 

\ - -  K1 (K3 + 2xl x2 ) - (K3 
-2)) ) 

+ KI(1 + x 1 • 

(13) 

According to theorem A 1, the occurrence of Andronov-Hopf  bifurcation in the 
system (7) requires the existence of an equilibrium point whose characteristic roots 
have vanishing real parts. From (10) and (13), this condition reads: 

~12 - 1 
= KI(Yl 2 + 1 )  - K  3 = O. (14) trace fx  (x)  Yz  1 + 1 

LEMMA 2 

Let K 1 > 0, K 3 > 0 be given. Suppose the system (7) has an equilibrium 
point ~" in the positive quadrant such that trace fx(~" ) = 0. Then the constants K 1, K 3 
satisfy 

(1 - K 3 )  2 
0 < K  1 ~< 8 ' 0 < K 3 < 1. (15) 
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Proof 

From (14)we obtain the equation: 

2K 1 + K 3 - 1 K 1 + K 3 + 1 
~2 + + 

K 1 K 1 

This equation has the solutions 

~2 = _~1 [1-2K 1 - K  3 + ((1-2K 1 
1,± 2K 1 

- 0 .  (16) 

- K3)2 - 4 K I ( K  1 + K 3 + 1))  1/2 ] 

(19) 

Under the assumptions that K 1 > 0, K 3 > 0, we obtain from (18) and (19) the con- 
ditions: 

0 < K 3 < 1, 0 < K x < ( 1 - K 3 ) / 2 ,  0 < K 1 ~< ( 1 - K 3 ) 2 / 8 .  (20) 

It is easy to see that in the interval 0 < K 3 < 1, the last condition implies the previ- 
ous one. [] 

COROLLARY 2.1 

Under the assumptions of lemma 2 we have 0 < K 1 < 1/8. 

Remark 2.2 

If ~ satisfies (16), we then have ~'~ > 1. 

LEMMA 3 

For given K 1 , K 3 values satisfying (15), there exist two not necessarily distinct 
parameter values m+ and m_ such that the system (7) for m = m+ and m = m_, 
respectively, has an equilibrium point ~÷ and £_ whose corresponding Jacobian has 
a vanishing trace. 

( 1 - K 3 ) 2 - 8 K  1/> 0. 

1-2K 1 - K  3 >  0 (18) 

For .~2 to be positive, we apply the conditions: 1,± 

_ 1 [1 - 2 K  1 - K  3 + ((1 - K 3 ) 2 - 8 K 1 ) U 2  ] . (17) 
2K 1 
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Proof 

For given K1, K s values satisfying (15), there are two positive numbers xa,+ 
and Xl,- satisfying (14). In order that Xl,+ and Xl,- also be solutions of (11), we 
obtain for the corresponding parameter values m+ and m_ 

~2 "~1 ,+(1 + k + Xl,+) X1,_(1 + k + ~'~_) 
~2 ' m_ := ~2 " (21) 

m+:=  k V,-~I(1 + x,,+) kV/~I(1 + x1 _) 

It is clear that the points .~+ and ~_ defined by 

"~+ := ('~1,+' "~1,- +/(1 + "~?,±)) (22) 

are equilibrium points o f (7 ) to  K1, K3, me. 

LEMMA 4 

Let K 1 2> 0, K 3 > 0 and .7_+ as in lemma 3. We then have 

I 1 detfx(.~'+ ) > 0 iff K3E(O, 5) ,KIE(O,~(1-K3)  2) or 

K 3 =~ ,  K , E  ( 0 , ~ )  or (23) 

1 1 K 3 E (-~, ~ (,v/5"- 1)), K 1 E  (0, ~ K2a(1-K3-K]) ) 

1 ~ K 3 ( l _ K 3 _  2 1 (1_K3)  2 detfx(.~_ ) > 0 iff K 3 E (0,-~), K 1 E K3) , 5 ). 

 oof 

It is easy to verify that an equilibrium point .g of (7)with trace fx(Y)= 0 
satisfies 

2 
detfx(Y ) = KI(1 + Yl 2) - K  3 . (24) 

Hence, we have from (17): 

detfx(~+) > 0 ~ 1 - K 3 - 2 K  ~ + x / ( 1 - K 3 ) 2 - 8 K  1 > 0 (25) 

detfx(.~_ ) > 0 ~ 1 - K  3 - 2 K ~  - x / ( 1 - K 3 ) 2 -  8K 1 > 0 .  (26) 

For 1 - K 3 - 2K~ > 0, the inequality (25) is valid for all K 1 satisfying (15). For 
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K 2 I In the case K 3 > 0, the relation 1 - K  3 - 2  3 > 0 i s e q u i v a l e n t t o 0 <  K 3 < 5" 
K 3 = X  1 5 '  the inequality (25) is equivalent to 0 < K 1 < ~2" For K 3 > 5 '  a simple 

X K32(1 - K  3 - K ~ ) .  calculation shows that the relation (25) is equivalent to K 1 < 5 
x ( V ~ -  1). The inequality (26) can Here, the upper bound is positive only for K 3 < 5 

be fulfilled only for 0 < K 3 < -_I. It is easy to show that in this case (26) is equivalent 
1 2 2 12 2 

to 5 K3(1 - K 3  - K 3 )  < K1 < g(1 - K 3 )  . [] 

We now introduce the regions 

~{+ "= {(K3,K1) "K 1 E (0, -~(1 -K3)2  ) 1 for K 3 ~ ( 0 , 5 ] ,  

1 for 5(x/3-1))1,(27) K 1 E (0 ,5  

~C :  = { ( K 3 , K , ) ' K 1 E ( ~ K 2 3 ( 1 - K a - K ~ ) , ~ ( 1 - K 3 )  2) for K 3E (0,-~)} 

which are represented in fig. 1. It is obvious that 7C C ~{+. 
According to lemma 4, (K 3, K 1 ) E  7~+ implies d e t f x ( 9 7 + ) >  0 and 

(K3, K1) E ~f_ implies det fx(97-) > 0. By lemmas 3 and 4, we find for each 
(K3, K1) E 7~+ from (21) a unique parameter value m+ such that the system (7) 
has an equilibrium point 97+ in the positive quadrant with trace fx(97+) = 0 and 
det fx(97+) > 0. Moreover, for each (K3, K 1 ) E 7{_, we find a unique parameter value 
m_ such that (7) has an equilibrium point 97_ with the same properties as 97+. 

As remarked above, for given (K3, K 1) E 7~+ we consider m as the bifurcation 
parameter. By theorem A1, m+ and m_ are possible bifurcation values for A n d o n o v -  
Hopf bifurcation. 

Under our conditions, there are intervals if+ := {m E [R:lm - m+l < 5} 
and functions x± :~± -+ [R 2 such that x±(m) are-simple equilibrium points of 

1 (7) for m E o~± satisfying x+_(m+_) = 97±. Setting a±(m):= 5 trace fx(x±(m)), 
b~(m) := det fx(Xe(m)) - (~ trace fx(x±(m))) 2, the characteristic roots of x±(m) 
can be written in the form 

K1,  ± = a±(m) + i b±(m), K2,+ = K I , ±  (28) 

To be able to apply theorem A2, we look for a condition guaranteeing 

d 
dma±(m±) 4= O. 

From (14) we have 
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KI 

KI= K 3 

/ 
i 

0.12 

0.1 

0.0 5 

0.01 

K3 

K1 = "~1~3 U-~3-~ 3 ) 

x+ 

Fig. 1. Qualitatively different regions of the parameter space. 

d 1 d 
dm a+(m)lm = m+ 2 dm 

trace fx(X+(m)) ' . _ I m  = m +  

( 2 K1 ) 
"~1,-+ ~,_+ + 1):a 

dXl,±(m) I 
dm m = m e 

(29) 
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LEMMA 5 

Let X'I,+_ be as above; then we have 

2 
K 1 ) (~?,++ 1) z for ( K a , K I ) E  3~+ and 

2 
K1 < ~2 for (K 3 K 1) E ,3~_ (xl,_ + 1) 2 ' . 

Proof 

From (17) we find 

2 SK, = 

(~x 2, _+ + 1)2 ( 1 - K  3 + x / i l - K 3 ) 2 - 8 K 1 ) 2  " 

(30) 

Hence, the relation 

2 
K 1 > (x?,+ + 1) 2 

is equivalent to 

8K 1 < ( 1 - K 3 ) 2 +  ( 1 - K a ) x / ( 1 - K 3 ) 2 - 8 K  1 (31) 

The validity of this inequality follows immediately from (K3, K 1 ) E ~f+. The relation 

2 
> K~ 

(~'~,_ + 1) 2 

is equivalent to 

( 1 - K 3 )  x / ( 1 - K 3 ) 2 - 8 K  1 > ( 1 - K 3 ) 2 - 8 K  1 . (32) 

For (K 3, K 1) E ~ _ ,  both sides of (32) are positive. Therfore, (32) is equivalent to 
0 > - 8 K 1 ,  which is always fulfilled. [] 
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Accordingly, the sign of 

da+ 

dm rt~ = m ±  

is uniquely determined by the sign of 

dXl,+ 

dm m = /qq± 

L E M M A  6 

Assume K 1 , K 3 to be positive and x±(m) as above. We then have 

dXl,± 
sign dm 

m = m ± 

= sign{Y~,_+ + (2-k)Y(,_+ + k +  1}.  (33) 

Proof 

xl,+- = xl,+(m+-) is a simple root of eq. (11) for m = m+. Thus, we obtain 
from (11) 

dxl,+ 

dm 
m = m +  

k X/K---1 (1 + .~i_+) 

3Y12_+ - 2k ~ m + x l , _ .  + k + 1 
(34) 

Hence, 

dXl'+ I sign / 2 ~ m+ ~ - -  - 2k x , +  + k + 1 }  
sign d m  m = m +  + 

(35) 

Substituting (21) into (35),we obtain (33). If we nowset q(z) • = z 2 + (2 - k)z + k + 1, 
we can easily verify that q(z)  has no real zero for k < 8. Thus, we get from lemma 6: 

C O R O L L A R Y  6 . 1  

Assume K x, K a to be positive and k < 8. Then 

d x  1 

dm r e = m + _  

has a positive sign. 



230 K.R. Schneider et al., A model for  synaptic slow waves 

To determine the direction of  the bifuraction, we need the sign of  the a3 
number defined in (A.6). To this end, we transform the system (12) fo r  m = m± into 
the normalized form (A.4) at )t = )t o using 

y ,  = (1 + ~?,±)o/b'±, Y2 = u - ( ' ~12 ,± -  1 )v / (b± (~ ,±  + 1)), (36) 

where b± = b±(m±) > 0. In this way,  we obtain the system 

2xl ,± "~1, _+(3 - .~12, ±)K 3 
du _ "b+o + = K3uo  + 02 
dt  - b± ~2(Z~,± + 1) 

1 + ~ 2  (~12+ - 1) 
+ ~±21' -+ K3 u 02 ~_+3- K3 03 

(37) 

do _ b + u + 2 ~  1 uv + x l '± (3 -x12 '± )  u 2 

dt  - '-+ b~(~lz,± + 1) 

1 +.~ff,+ ( .~,+ - 1) 
+ - U 0 2 - 0 3 

According to (A.6), we also obtain 

- 2 12 K 3 (3 - ~ ,  ±)  
+ _1) 

(38) 

1) K 3  ~ 

+ ~'+2 (x~,± + 1). 

It is easy to determine the sign of  a3, ± numerically. To be able to determine this sign 
analytically, we restrict ourselves to the case K 1 = K 3 = : K ~ 1. We remark that the 
straight line K 1 = K 3 is located in the region 0 < k < 8 (cf. fig. 1). 

From (17), (21) and (24) we find the relations 

~'2 = 1 
1,+ K 

m +  

- -  - 4 + O(K) ,  ~'+2 = detfx(.~+) = 1 - 3K + O(K2), 

1 
= - -  + O ( K )  

K 
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~-2 = 1 + 6K + O(K2) ,  ~'_2 = 2K + 5 K  2 + O(K3) ,  
1~-- 

1.5 m_ - + 4 x/rK + O(Ka/2). (39) ,/-g 

Using the relations (39), we obtain from (38): 

1 
i f3,+-  K 1 + O(K) 

1 
ffa,- = 2K 10.5 + O(K), 

(40) 

which implies that both ffa,+ and ffa,- have negative signs for K 1 = K a = K, with K 
sufficiently small. 

Applying lemmas 3 and 4, corollary 6.1 and theorem A2, we obtain the follow- 
ing result: 

THEOREM7 

Let K 1 = K 3 = K, with K sufficiently small. Then there exist exactly two 
values m+ and m_, defined by (21) such that for m > m_,  m -  m _  sufficiently 
small, the system (7) has a unique stable limit cycle in a small neighbourhood of the 
equilibrium point ~_ defined by (22) and this contracts to ~_ as m tends to m_. 
Moreover, for m < m +, m ÷ - m sufficiently small, the system (7) has a unique stable 
limit cycle in a small neighbourhood of the equilibrium point ~+ defined by (22) 
and this contracts to ~+ as m tends to m ÷. 

3. Discuss ion a n d  perspec t ives  

The model presented and investigated in the present paper has two important 
characteristics: 

(i) it adheres to experimental facts from neurobiology as strictly as possible; 
(ii) it is straightforward in that it contains nothing more than a single brus- 

selator-type nonlinearity plus a simple irreversible triangle reaction. 

Although the model is closed with respect to mass, it is still able to produce 
oscillations. This is not in contradiction with the propositions of thermodynamics 
because neither our model nor its elaboration with reverse reactions is balanced at 
the detailed level. 
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One area of  further research could involve the qualitative investigation of the 
four-dimensional model and the investigation of the dependence of behaviour on 
more than two parameters. 

Numerical investigations suggest that additional elementary reactions may 
not disturb the presence of oscillatory solutions. This question has not been investi- 
gated by theoretical means so far. A similar question is: What kinds of nonlinearities 
(in regard to non-mass-action kinetics) are enough to ensure the existence of periodic 
solutions? 

A p p e n d i x  

Consider the qualitative behaviour of the trajectories of the differential system 

dYl 

dt 
b( ! ) (X)  ' " i] Yl y/ + rl (Yl'  Y2 

1 < i+] < 3 

, x )  

dY2 = ~ (2) " ' 

d t  l<<.i+]<~3bij (X) y ; y ~  +r2(y l , y2 ,  k ) 

(A.1) 

in the neighbourhood G of the origin y = 0 for 

X E A o ' =  {X C R l X - X o l < 8 o , 8 o >  0} 

under the following regularity assumptions. 

(H1) F o r k  = 1 , 2 ; 1  ~< i + j ~ <  3, the coefficients b ( k ) - A  o -> P, arecon- 
tinuous. 

(H2) For k = 1, 2, the functions rk: G x A o -+ [R are differentiable with 
respect to y up to order 3 where all derivatives continuously depend 
on (y, X) and satisfy Irk(y, X)l = O( lyl 3) as lyl ~ 0 uniformly in 

X E A  o. 

We are interested in the bifurcation of a periodic solution of (A.1) from the 
equilibrium point y = 0 as. X crosses the critical value k = )t o (Andronov-Hopf  
bifurcation). Let us denote by KI(X), ~:2(X) the characteristic roots of  y = 0 of the 
system (A.1). The following theorem can be easily demonstrated: 

THEOREM A I 

Assume(H1) , (H2)to  be v~id. The conditions 

Re K1(ko) = Re K2(ko) = 0 (A .2) 
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are necessary for the bifurcation of a family of periodic solution of (A.1) from the 
equilibrium point y = 0 as X crosses X o . 

In the sequel, we suppose that the equilibrium point y = 0 of (A.1) has the 
characteristic roots K1, 2 = a(X) +- ib(X) for X E A o satisfying (A.2) and 

b(Xo) > 0. (A.3) 

Using the transformation 

x 2 = b ( X ) [ b ( o l , ) ( X ) l - l y  I X 1 = .P 2 -- [b(021 ) - - a ( ~ . ) ]  [b(ol? ( ) k ) ] - l y  1 , 

the system (A.1) is equivalent to the system 

d x  1 . . 
at - a ( x 3 x l - b ( x ) x 2  + +vl(x''z2'x  

2 <~ i+j  <~ 3 

d x 2  Z (2) i ' , ~,), 
- b ( X ) x  1 + a ( X ) x  2 + aij ( ) k ) X l X 2  / + - r 2 ( x 1  x 2 , 

dt 2~<i+/K3 

(A.4) 

where the coefficients a, b, a} k)  and the functions -fk have the same regularity proper- 
ties as the corresponding one in (A.1). 

From [1,10,11],  we obtain the following result: 

THEOREM A 2 

The hypotheses 

(H3) a} k )  and r k have the same regularity properties as the coefficients 
and functions in (H 1 ), (H2); 

(Ha) a, b " A o -+ N are continuous, a is continuously differentiable satisfy- 
ing (A.2), (A.3) and 

(H s ) 

a ' (Xo) 4: 0. 

• = {,a2o + a(I)~02" + 2(a(012 ) i/(02) 

--  a 2 0  '-*20 ) - - a l l  

(A.5) 

4 : 0  (A.6) 
X= Ko 
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are sufficient for the bifurcation of exactly one family of periodic 
solutions of the system (A.4) from the origin with the representation 
x = p (t, k) satisfying 

p( t+  T()t), )t) = p ( t ,  )t), T ( ) t ) -  
27r 

+ O( I ) t - - ) t012)  
b()t o) 

[ a t (0)  I[ I} 1'2 
max Ip(t,)t)l = {8 - - i I ) t  - ) t  o + O( I ) t - ) t o l ) .  

t E  [ 0, T(~.)] if3 

The direction of bifurcation is determined by sign [ -  a'(Xo)33], 
which implies there is a sufficiently small neighbourhood G 1 of x = 0 
such that, if - a'(Xo)ff 3 has positive (negative) sign, then the system 
(A.4) has a unique limit cycle p(t, X) in G 1 for X >  X o ( X <  Xo) and 
IX - )to I sufficiently small, whereas (A.4) has no limit cycle in G 1 for 
)t < )t0 ()t > )to) and I)t - )tol sufficiently small. The stability of 
p(t, )t) is opposite to that of  the origin. 
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